论文标题

通过集合密度函数极限的电子激发态

Electronic excited states in extreme limits via ensemble density functionals

论文作者

Gould, Tim, Kooi, Derk P., Gori-Giorgi, Paola, Pittalis, Stefano

论文摘要

密度功能理论(DFT)通过基于高密度和低密度限制的范式物理学来代替棘手的{\ em ab intib}计算,从而大大扩展了我们负担得起的计算和理解电子接地状态的能力。但是,对激发状态的可比处理滞后。在这里,我们通过对集成状态(EDFT)的密度功能理论的概括来解决这个杰出的问题。因此,我们在强(低密度)和弱(高密度)相关方案中解决所有电子系统的重要范式案例。我们表明,高密度极限连接到最近可溶解的EDFT结果。低密度极限揭示了一个未引起注意的结果 - 可以将严格相关的{\ em地面}状态的密度函数直接用于激发态{\ em}。对激发结构的非平凡依赖性仅在第三领先顺序显示。总体而言,我们的结果为激发态的有效模型提供了基础,这些模型在精确的低密度和高密度限制之间插值,我们在h $ _2 $和量子井环的单线单式激发案例中说明了这一点。

Density functional theory (DFT) has greatly expanded our ability to affordably compute and understand electronic ground states, by replacing intractable {\em ab initio} calculations by models based on paradigmatic physics from high- and low-density limits. But, a comparable treatment of excited states lags behind. Here, we solve this outstanding problem by employing a generalization of density functional theory to ensemble states (EDFT). We thus address important paradigmatic cases of all electronic systems in strongly (low-density) and weakly (high-density) correlated regimes. We show that the high-density limit connects to recent, exactly-solvable EDFT results. The low-density limit reveals an unnoticed and most unexpected result -- density functionals for strictly correlated {\em ground} states can be reused {\em directly} for excited states. Non-trivial dependence on excitation structure only shows up at third leading order. Overall, our results provide foundations for effective models of excited states that interpolate between exact low- and high-density limits, which we illustrate on the cases of singlet-singlet excitations in H$_2$ and a ring of quantum wells.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源