论文标题
天生的因果探测吗啡辅助
Naturalistic Causal Probing for Morpho-Syntax
论文作者
论文摘要
探测已成为解释和分析自然语言处理中深层神经模型的首选方法。但是,仍然缺乏对各种类型探针的局限性和弱点的了解。在这项工作中,我们建议对自然主义句子进行投入级别干预的策略。使用我们的方法,我们干预句子的形态句法特征,同时使其余的句子保持不变。这样的干预措施使我们能够因果探测预训练的模型。我们应用自然主义因果探测框架来分析语法性别和数字对从西班牙语中的三个预训练模型中提取的上下文化表示的影响:BERT,ROBERTA和ROBERA和GPT-2的多语言版本。我们的实验表明,自然主义干预措施会导致对各种语言特性的因果影响的稳定估计。此外,我们的实验证明了在分析预训练模型时自然主义因果探测的重要性。
Probing has become a go-to methodology for interpreting and analyzing deep neural models in natural language processing. However, there is still a lack of understanding of the limitations and weaknesses of various types of probes. In this work, we suggest a strategy for input-level intervention on naturalistic sentences. Using our approach, we intervene on the morpho-syntactic features of a sentence, while keeping the rest of the sentence unchanged. Such an intervention allows us to causally probe pre-trained models. We apply our naturalistic causal probing framework to analyze the effects of grammatical gender and number on contextualized representations extracted from three pre-trained models in Spanish: the multilingual versions of BERT, RoBERTa, and GPT-2. Our experiments suggest that naturalistic interventions lead to stable estimates of the causal effects of various linguistic properties. Moreover, our experiments demonstrate the importance of naturalistic causal probing when analyzing pre-trained models.