论文标题

NR-RRT:在不确定的非凸环境中的神经风险感知近乎最佳的路径计划

NR-RRT: Neural Risk-Aware Near-Optimal Path Planning in Uncertain Nonconvex Environments

论文作者

Meng, Fei, Chen, Liangliang, Ma, Han, Wang, Jiankun, Meng, Max Q. -H.

论文摘要

平衡安全性和效率之间的权衡对于不确定性下的路径规划至关重要。已经开发了许多风险感知的路径计划者,以明确将碰撞的可能性限制为在不确定的环境中可接受的界限。但是,通常假定凸障碍或高斯不确定性使问题可以在现有方法中处理。这些假设限制了路径规划师在现实世界实施中的概括和应用。在本文中,我们建议将深度学习方法应用于基于抽样的计划者,开发出一种新颖的风险限制的近乎最佳的路径计划算法,称为神经风险感知RRT(NR-RRT)。具体而言,通过感知概率的非凸障碍来维护确定性风险图形图,并提出了神经网络采样器来预测下一个最倾向的安全状态。此外,使用递归划分的划分计划和双向搜索策略用于加速汇聚到具有保证有限风险的近乎最佳解决方案。最差的理论保证也可以证明是由于使用统一的采样分布的备用安全性计划者。仿真实验表明,所提出的算法在具有不确定性和非convex约束的可见和看不见的环境中发现风险有限的低成本路径的最先进。

Balancing the trade-off between safety and efficiency is of significant importance for path planning under uncertainty. Many risk-aware path planners have been developed to explicitly limit the probability of collision to an acceptable bound in uncertain environments. However, convex obstacles or Gaussian uncertainties are usually assumed to make the problem tractable in the existing method. These assumptions limit the generalization and application of path planners in real-world implementations. In this article, we propose to apply deep learning methods to the sampling-based planner, developing a novel risk bounded near-optimal path planning algorithm named neural risk-aware RRT (NR-RRT). Specifically, a deterministic risk contours map is maintained by perceiving the probabilistic nonconvex obstacles, and a neural network sampler is proposed to predict the next most-promising safe state. Furthermore, the recursive divide-and-conquer planning and bidirectional search strategies are used to accelerate the convergence to a near-optimal solution with guaranteed bounded risk. Worst-case theoretical guarantees can also be proven owing to a standby safety guaranteed planner utilizing a uniform sampling distribution. Simulation experiments demonstrate that the proposed algorithm outperforms the state-of-the-art remarkably for finding risk bounded low-cost paths in seen and unseen environments with uncertainty and nonconvex constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源