论文标题
贝叶斯物理学的极限学习机器,用于嘈杂数据的前进和逆PDE问题
Bayesian Physics-Informed Extreme Learning Machine for Forward and Inverse PDE Problems with Noisy Data
论文作者
论文摘要
物理知识的极限学习机(PIELM)最近作为用于求解偏微分方程(PDES)的物理信息的神经网络(Pinn)的快速版本受到了极大的关注。关键特征是用随机值固定输入层权重,并为输出层权重使用Moore-Penrose概括倒数。该框架是有效的,但是它很容易遭受噪音过度的数据,并且缺乏噪声场景下解决方案的不确定性量化。为了使我们开发贝叶斯物理学意识到的极端学习机器(BPIELM),以解决统一框架中嘈杂数据的前进和逆线性PDE问题。在我们的框架中,具有物理定律的极限学习机的输出层中引入了先前的概率分布,并使用贝叶斯方法估计参数的后验。此外,对于逆PDE问题,将被视为新输出层权重的问题参数统一在具有正向PDE问题的框架中。最后,我们证明了BPIELM考虑了远期问题,包括泊松,对流方程和扩散方程,以及反向问题,在这些问题中估计了未知的问题参数。结果表明,与PIELM相比,BPIELM量化了嘈杂数据引起的不确定性,并提供了更准确的预测。此外,就计算成本而言,BPIELM比Pinn便宜得多。
Physics-informed extreme learning machine (PIELM) has recently received significant attention as a rapid version of physics-informed neural network (PINN) for solving partial differential equations (PDEs). The key characteristic is to fix the input layer weights with random values and use Moore-Penrose generalized inverse for the output layer weights. The framework is effective, but it easily suffers from overfitting noisy data and lacks uncertainty quantification for the solution under noise scenarios.To this end, we develop the Bayesian physics-informed extreme learning machine (BPIELM) to solve both forward and inverse linear PDE problems with noisy data in a unified framework. In our framework, a prior probability distribution is introduced in the output layer for extreme learning machine with physic laws and the Bayesian method is used to estimate the posterior of parameters. Besides, for inverse PDE problems, problem parameters considered as new output layer weights are unified in a framework with forward PDE problems. Finally, we demonstrate BPIELM considering both forward problems, including Poisson, advection, and diffusion equations, as well as inverse problems, where unknown problem parameters are estimated. The results show that, compared with PIELM, BPIELM quantifies uncertainty arising from noisy data and provides more accurate predictions. In addition, BPIELM is considerably cheaper than PINN in terms of the computational cost.