论文标题
人工智能辅助优化和多边形PEM燃料电池的多相分析
Artificial Intelligence-Assisted Optimization and Multiphase Analysis of Polygon PEM Fuel Cells
论文作者
论文摘要
本文介绍了新的六角形和五角形PEM燃料电池模型。在提高细胞性能后,这些模型已得到了优化。多目标优化算法的输入参数是入口处的压力和温度,消耗和输出功率是客观参数。数值模拟的输出数据已使用深神经网络训练,然后以多项式回归进行建模。已使用RSM(响应表面方法)提取目标函数,并使用多目标遗传算法(NSGA-II)优化了目标。与基本模型相比,优化的五角大楼和六边形模型分别将输出电流密度增加21.8%和39.9%。
This article presents new hexagonal and pentagonal PEM fuel cell models. The models have been optimized after achieving improved cell performance. The input parameters of the multi-objective optimization algorithm were pressure and temperature at the inlet, and consumption and output powers were the objective parameters. The output data of the numerical simulation has been trained using deep neural networks and then modeled with polynomial regression. The target functions have been extracted using the RSM (Response Surface Method), and the targets were optimized using the multi-objective genetic algorithm (NSGA-II). Compared to the base model, the optimized Pentagonal and Hexagonal models increase the output current density by 21.8% and 39.9%, respectively.