论文标题
关于一般预测的纤维的大小和局部方程
On the size and local equations of fibres of general projections
论文作者
论文摘要
对于平滑非等级投影的一般性偶然投影 $ n $ -fold从$ \ Mathbb p^{n+c} $到$ \ Mathbb p^m $,$ n <m \ leq(n+c)/2 $,所有纤维的总长度渐近。 $ 2^{\ sqrt {n} +1} $,纤维由线性和二次方程式局部定义。
For a general birational projection of a smooth nondegenerate projective $n$-fold from $\mathbb P^{n+c}$ to $\mathbb P^m$, $n<m\leq(n+c)/2$, all fibres have total length asymptotically bounded by $2^{\sqrt{n}+1} $ and the fibres are locally defined by linear and quadratic equations.