论文标题

绕过XOR技巧:HyperGraph Clique Number的更强证书

Bypassing the XOR Trick: Stronger Certificates for Hypergraph Clique Number

论文作者

Guruswami, Venkatesan, Kothari, Pravesh K., Manohar, Peter

论文摘要

令$ \ Mathcal {h}(k,n,p)$为$ k $ - 均匀的超图的分布,其中$ [n] $ size $ k $的每个子集都包含在具有概率$ p $的超元中。在这项工作中,我们设计和分析了一种简单的频谱算法,该算法证明了最大集团$ω(h)$的大小,在HyperGraphs $ h \ sim \ sim \ Mathcal {h}(k,n,p)$中。例如,对于任何常数$ p $,对于选择超图的可能性很高,我们的频谱算法在polynomial时间中的集团数字上的$ \ tilde {o}(\ sqrt {n})$的界限。这与最高$ \ textrm {polylog}(n)$因子相匹配,这是随机图中最著名的集团编号证书,这是$ k = 2 $的特殊情况。 在我们工作之前,最著名的反驳算法[CGL04,AOW15]依赖于通过Feige's Xor Trick [FEI02]反驳随机$ k $ -XOR的问题,并在多个范围内的限制较差,$ \ tilde {o}(O}(O}(O})(n^{3/4})$上的$ p = o p = o p = o p = o p = o p = o(1)我们的算法绕过XOR技巧,而是依赖于HyperGraphs中群集的Lovasz theta半决赛编程放松的自然概括。

Let $\mathcal{H}(k,n,p)$ be the distribution on $k$-uniform hypergraphs where every subset of $[n]$ of size $k$ is included as an hyperedge with probability $p$ independently. In this work, we design and analyze a simple spectral algorithm that certifies a bound on the size of the largest clique, $ω(H)$, in hypergraphs $H \sim \mathcal{H}(k,n,p)$. For example, for any constant $p$, with high probability over the choice of the hypergraph, our spectral algorithm certifies a bound of $\tilde{O}(\sqrt{n})$ on the clique number in polynomial time. This matches, up to $\textrm{polylog}(n)$ factors, the best known certificate for the clique number in random graphs, which is the special case of $k = 2$. Prior to our work, the best known refutation algorithms [CGL04, AOW15] rely on a reduction to the problem of refuting random $k$-XOR via Feige's XOR trick [Fei02], and yield a polynomially worse bound of $\tilde{O}(n^{3/4})$ on the clique number when $p = O(1)$. Our algorithm bypasses the XOR trick and relies instead on a natural generalization of the Lovasz theta semidefinite programming relaxation for cliques in hypergraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源