论文标题
使用$(g,f)$ - 因子和$ m $ -tree连接$(m,f')$ - 因素的存在$ m $ -tree连接$(g,f+f'-m)$ - 因素
The existence of $m$-tree-connected $(g,f+f'-m)$-factors using $(g,f)$-factors and $m$-tree-connected $(m,f')$-factors
论文作者
论文摘要
让$ g $为图,让$ g $,$ f $和$ f'$是$ g \ le f $的$ v(g)$上的三个正整数值函数。 Tokuda,Xu和Wang(2003)表明,如果$ g $包含$(g,f)$ - 因子和一个跨度$ f'$ - 树,则$ g $也包含连接的$(g,f+f'-1)$ - 因子。在本说明中,我们通过证明$ g $包含$(g,f)$ - 因子和$ m $ - 树连接$(m,f')$ - 因子,然后$ g $也包含$ m $ m $ m $ m-$ - tree-tree-connected $(G,f+f'-m)$ f fe ge,我们还包含$(g,f')$ - $ f fe ge ge ge ge ge,我们还将其结果开发为与树连接的版本。此外,我们表明$ g $允许无负。
Let $G$ be a graph and let $g$, $f$, and $f'$ be three positive integer-valued functions on $V(G)$ with $g\le f$. Tokuda, Xu, and Wang (2003) showed that if $G$ contains a $(g,f)$-factor and a spanning $f'$-tree, then $G$ also contains a connected $(g,f+f'-1)$-factor. In this note, we develop their result to a tree-connected version by proving that if $G$ contains a $(g,f)$-factor and an $m$-tree-connected $(m,f')$-factor, then $G$ also contains an $m$-tree-connected $(g,f+f'-m)$-factor, provided that $f\ge m$. In addition, we show that $g$ allows to be nonnegative.