论文标题
元平衡网络以识别公平的面部识别
Meta Balanced Network for Fair Face Recognition
论文作者
论文摘要
尽管近年来,深层识别取得了令人印象深刻的进步,但基于肤色的歧视引起了争议,质疑他们在现实世界情景中的部署。在本文中,我们旨在从数据和算法方面进行系统和科学地研究这种偏见。首先,使用皮肤科医生批准的Fitzpatrick皮肤类型分类系统和单个类型学角度,我们为名为“身份阴影(IDS)数据库”的基准进行了贡献,该基准有效地量化了现有面部识别算法和商业API中肤色的偏差程度。此外,我们提供了两个皮肤意识训练数据集,称为BUPT-Globalface数据集和BUPT-BALCANCEFACE数据集,以消除培训数据中的偏差。最后,为了减轻算法偏见,我们提出了一种新型的元学习算法,称为元平衡网络(MBN),该算法学习了较大的边缘损失的适应性边缘,以使这种损失优化的模型可以在具有不同皮肤的人之间进行相当相当的损失。为了确定边缘,我们的方法优化了在干净且无偏的元集中的元偏度损失,并利用向后的自动分化来对当前边缘进行二阶梯度下降步骤。广泛的实验表明,MBN成功减轻了偏见,并为具有不同肤色的人的面部识别而学习更加平衡的表现。提出的数据集可在http://www.whdeng.cn/rfw/index.html上找到。
Although deep face recognition has achieved impressive progress in recent years, controversy has arisen regarding discrimination based on skin tone, questioning their deployment into real-world scenarios. In this paper, we aim to systematically and scientifically study this bias from both data and algorithm aspects. First, using the dermatologist approved Fitzpatrick Skin Type classification system and Individual Typology Angle, we contribute a benchmark called Identity Shades (IDS) database, which effectively quantifies the degree of the bias with respect to skin tone in existing face recognition algorithms and commercial APIs. Further, we provide two skin-tone aware training datasets, called BUPT-Globalface dataset and BUPT-Balancedface dataset, to remove bias in training data. Finally, to mitigate the algorithmic bias, we propose a novel meta-learning algorithm, called Meta Balanced Network (MBN), which learns adaptive margins in large margin loss such that the model optimized by this loss can perform fairly across people with different skin tones. To determine the margins, our method optimizes a meta skewness loss on a clean and unbiased meta set and utilizes backward-on-backward automatic differentiation to perform a second order gradient descent step on the current margins. Extensive experiments show that MBN successfully mitigates bias and learns more balanced performance for people with different skin tones in face recognition. The proposed datasets are available at http://www.whdeng.cn/RFW/index.html.