论文标题

fontnet:在字体合成中缩小差距到字体设计器的性能

FontNet: Closing the gap to font designer performance in font synthesis

论文作者

Muhammad, Ammar Ul Hassan, Choi, Jaeyoung

论文摘要

近年来,字体合成一直是一个非常活跃的主题,因为手动字体设计需要域专业知识,并且是一项劳动密集型且耗时的工作。尽管非常成功,但现有的字体合成方法具有主要的缺点。他们需要使用大型参考图像的未观察到的字体样式进行填充,最近的几种字体合成方法要么是为特定语言系统设计的,要么是在限制其使用的低分辨率图像上运行的。在本文中,我们通过学习嵌入空间中的字体样式来解决此字体合成问题。为此,我们提出了一个称为fontnet的模型,该模型同时学习在嵌入式空间中分离字体样式,在嵌入式空间中,距离直接对应于字体相似性的度量,并将输入图像转换为给定的观察到的或未观察到的字体样式。此外,我们设计了可以为任何语言系统采用的网络体系结构和培训程序,并可以生成高分辨率字体图像。由于这种方法,我们提出的方法在定性和定量实验上都优于现有的最新字体生成方法。

Font synthesis has been a very active topic in recent years because manual font design requires domain expertise and is a labor-intensive and time-consuming job. While remarkably successful, existing methods for font synthesis have major shortcomings; they require finetuning for unobserved font style with large reference images, the recent few-shot font synthesis methods are either designed for specific language systems or they operate on low-resolution images which limits their use. In this paper, we tackle this font synthesis problem by learning the font style in the embedding space. To this end, we propose a model, called FontNet, that simultaneously learns to separate font styles in the embedding space where distances directly correspond to a measure of font similarity, and translates input images into the given observed or unobserved font style. Additionally, we design the network architecture and training procedure that can be adopted for any language system and can produce high-resolution font images. Thanks to this approach, our proposed method outperforms the existing state-of-the-art font generation methods on both qualitative and quantitative experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源