论文标题
简单有效的基于关系的嵌入繁殖用于知识表示学习
Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning
论文作者
论文摘要
关系图神经网络特别注意知识图(kgs)中的编码图上下文。尽管他们在小公斤上取得了竞争性的表现,但如何有效地利用大公斤的图形上下文仍然是一个开放的问题。为此,我们提出了基于关系的嵌入传播(REP)方法。这是一种后处理技术,可将预训练的KG嵌入使用图形上下文。由于公斤的关系是定向的,因此我们分别对传入的头部上下文和即将推出的尾部上下文进行建模。因此,我们设计了无外部参数的关系上下文功能。此外,我们使用平均来汇总上下文信息,从而使REP提高计算有效。从理论上讲,我们证明了这种设计可以避免在传播过程中避免信息失真。广泛的实验还表明,REP在改善或维持预测质量的同时具有明显的可伸缩性。值得注意的是,它平均带来了大约10%的相对改善,可在OGBL-Wikikg2上的基于三重态的嵌入方法,并花费5%-83%的时间获得可比的结果作为最先进的GC-ote。
Relational graph neural networks have garnered particular attention to encode graph context in knowledge graphs (KGs). Although they achieved competitive performance on small KGs, how to efficiently and effectively utilize graph context for large KGs remains an open problem. To this end, we propose the Relation-based Embedding Propagation (REP) method. It is a post-processing technique to adapt pre-trained KG embeddings with graph context. As relations in KGs are directional, we model the incoming head context and the outgoing tail context separately. Accordingly, we design relational context functions with no external parameters. Besides, we use averaging to aggregate context information, making REP more computation-efficient. We theoretically prove that such designs can avoid information distortion during propagation. Extensive experiments also demonstrate that REP has significant scalability while improving or maintaining prediction quality. Notably, it averagely brings about 10% relative improvement to triplet-based embedding methods on OGBL-WikiKG2 and takes 5%-83% time to achieve comparable results as the state-of-the-art GC-OTE.