论文标题
在嘈杂环境中有效的量子状态跟踪
Efficient Quantum State Tracking in Noisy Environments
论文作者
论文摘要
量子状态断层扫描旨在找到量子状态的最佳描述 - 密度矩阵,是量子计算和通信中的重要构建块。国家断层扫描的标准技术无法跟踪变化状态,并且在存在环境噪声的情况下经常表现较差。尽管从理论上讲有不同的方法可以解决这些问题,但迄今为止,实验示范却很少。我们的方法是矩阵实现的梯度断层扫描,是一种在线层析成像方法,可以从第一个测量值中动态进行状态跟踪,在计算上有效地更新估计的密度矩阵,即使使用噪声数据,也可以快速收敛到良好的估计。该算法通过单个参数(其学习率)控制,该参数决定了性能,并且可以在模拟中定制的单个实验。我们介绍了在光子横向空间模式中编码的QUTRIT系统上的基质实现梯度断层扫描的实验实现。我们研究了方法在固定和不断发展的状态以及明显的环境噪声方面的性能,并在所有情况下都发现约95%的保真度。
Quantum state tomography, which aims to find the best description of a quantum state -- the density matrix, is an essential building block in quantum computation and communication. Standard techniques for state tomography are incapable of tracking changing states and often perform poorly in the presence of environmental noise. Although there are different approaches to solve these problems theoretically, experimental demonstrations have so far been sparse. Our approach, matrix-exponentiated gradient tomography, is an online tomography method that allows for state tracking, updates the estimated density matrix dynamically from the very first measurements, is computationally efficient, and converges to a good estimate quickly even with noisy data. The algorithm is controlled via a single parameter, its learning rate, which determines the performance and can be tailored in simulations to the individual experiment. We present an experimental implementation of matrix-exponentiated gradient tomography on a qutrit system encoded in the transverse spatial mode of photons. We investigate the performance of our method on stationary and evolving states, as well as significant environmental noise, and find fidelities of around 95% in all cases.