论文标题
开放式视频对象检测的局部视觉匹配
Localized Vision-Language Matching for Open-vocabulary Object Detection
论文作者
论文摘要
在这项工作中,我们提出了一种开放式摄制对象检测方法,该方法基于图像映射对,学会了检测新颖对象类别以及给定的一组已知类别。这是一种两阶段的训练方法,首先使用位置指导的图像捕捉匹配技术以弱监督的方式学习新颖和已知类别的类标签,第二个使用已知的类注释专门针对对象检测任务的模型。我们表明,一个简单的语言模型比检测新对象的大型上下文化语言模型更适合。此外,我们引入了一种一致性调节技术,以更好地利用图像捕获对信息。我们的方法比较与现有的开放式检测方法相比,同时具有数据效率。源代码可从https://github.com/lmb-freiburg/locov获得。
In this work, we propose an open-vocabulary object detection method that, based on image-caption pairs, learns to detect novel object classes along with a given set of known classes. It is a two-stage training approach that first uses a location-guided image-caption matching technique to learn class labels for both novel and known classes in a weakly-supervised manner and second specializes the model for the object detection task using known class annotations. We show that a simple language model fits better than a large contextualized language model for detecting novel objects. Moreover, we introduce a consistency-regularization technique to better exploit image-caption pair information. Our method compares favorably to existing open-vocabulary detection approaches while being data-efficient. Source code is available at https://github.com/lmb-freiburg/locov .