论文标题
适用于简洁的平面编码的空间效率图形
Space-Efficient Graph Coarsening with Applications to Succinct Planar Encodings
论文作者
论文摘要
我们提出了一种新颖的空间效率图形技术,适用于$ n $ vertex Planar Graphs $ g $,称为云分区,该图将顶点$ v(g)$划分为discoint sets $ c $ of y y $ o(\ log n)$的$ c $,这样每$ c $诱导了$ g $的连接子$ g $。使用此分区$ p $,我们通过在不相交集中的特定收缩中构建了所谓的结构修养$ g $的$ f $ $ g $。 $(f,p)$的组合称为云分解。 对于平面图,我们表明可以在$ o(n)$时间和使用$ o(n)$位构建云分解。给定为平面图$ g $构建的云分解$(f,p)$,我们能够找到$ o(n/\ log n)$时间的$ g $的平衡分离器。与相关出版物相反,我们不利用平面输入图的嵌入。我们将云分解从平面图概括为任何固定图$ H $的$ H $ MINOR-MINOR图形。这使我们能够以$ h $ minor的无图形为$ o(n)$时间和$ o(n)$(n)$ lits构建简洁的编码方案,并以$ o(n)$ o(n)$ bits的价格提高了运行时和空间。 作为我们云分解的附加应用,我们表明,对于$ h $ minor的图形,可以用$ o(n)$ lits构建宽度$ o(n^{1/2 +ε})$的树的树分解$(n^{1/2 +ε})$。最后,我们实现了云分解算法,并在实验中验证了其在随机生成的图形和现实图形(例如道路网络)上的实践有效性。获得的数据表明,在实用环境中,我们的算法的简化版本足够了,因为我们遇到的图表中不存在许多理论上的最坏情况。
We present a novel space-efficient graph coarsening technique for $n$-vertex planar graphs $G$, called cloud partition, which partitions the vertices $V(G)$ into disjoint sets $C$ of size $O(\log n)$ such that each $C$ induces a connected subgraph of $G$. Using this partition $P$ we construct a so-called structure-maintaining minor $F$ of $G$ via specific contractions within the disjoint sets such that $F$ has $O(n/\log n)$ vertices. The combination of $(F, P)$ is referred to as a cloud decomposition. For planar graphs we show that a cloud decomposition can be constructed in $O(n)$ time and using $O(n)$ bits. Given a cloud decomposition $(F, P)$ constructed for a planar graph $G$ we are able to find a balanced separator of $G$ in $O(n/\log n)$ time. Contrary to related publications, we do not make use of an embedding of the planar input graph. We generalize our cloud decomposition from planar graphs to $H$-minor-free graphs for any fixed graph $H$. This allows us to construct the succinct encoding scheme for $H$-minor-free graphs due to Blelloch and Farzan (CPM 2010) in $O(n)$ time and $O(n)$ bits improving both runtime and space by a factor of $Θ(\log n)$. As an additional application of our cloud decomposition we show that, for $H$-minor-free graphs, a tree decomposition of width $O(n^{1/2 + ε})$ for any $ε> 0$ can be constructed in $O(n)$ bits and a time linear in the size of the tree decomposition. Finally, we implemented our cloud decomposition algorithm and experimentally verified its practical effectiveness on both randomly generated graphs and real-world graphs such as road networks. The obtained data shows that a simplified version of our algorithms suffices in a practical setting, as many of the theoretical worst-case scenarios are not present in the graphs we encountered.