论文标题
使用随机驾驶,在不相关的热状态下进行工程准态状态相关性
Engineering quasi-steady-state correlations in uncorrelated thermal states using stochastic driving
论文作者
论文摘要
非平衡量子动力学会导致新型稳态的出现。我们提出了一个方案,用于驱动最初不相关的热状态,以通过确定和反向工程为一类Markov过程的稳态两点函数生成定制的相关函数。我们还将形式主义扩展到四点函数的计算。然后,我们将我们的方法应用于生成幂律相关的费米子格林的功能。此外,我们发现,幂律模式在比稳态的收敛时间短得多,这时两点相关中的疾病消失了。另一方面,密度密度相关性表现出稳态障碍,同时遵循幂律趋势线。在存在扰动的情况下,这些理想的稳态以中级准稳态状态出现。
Nonequilibrium quantum dynamics can give rise to the emergence of novel steady states. We propose a scheme for driving an initially uncorrelated thermal state to generate customized correlation functions by determining and reverse engineering the steady-state two-point functions for a class of Markov processes. We also extend the formalism to the calculation of four-point functions. We then apply our method to generating power-law correlated fermionic Green's functions. Furthermore, we find that the power-law patterns emerge at much shorter times than the convergence to the steady state, at which point the disorder in the two-point correlations disappears. On the other hand, the density-density correlations exhibit steady-state disorder while following a power-law trendline. These ideal steady states appear as intermediate-time quasi-steady states in the presence of perturbations.