论文标题
Kardar-Parisi-Zhang通用类中的镜子对称分解
Mirror symmetry breakdown in the Kardar-Parisi-Zhang universality class
论文作者
论文摘要
1+1个维度中Kardar-Parisi-Zhang(KPZ)通用性的当前/高度波动统计对初始状态敏感。我们发现,在调节波动时,最初状态上的平均值表现出通用和规模不变的模式。为了建立我们的发现的普遍性,我们使用属于KPZ普遍性类别的完全不对称的简单排除过程(Tasep)的大规模蒙特卡洛模拟在不同时间和高度展示了规模不变性。在这里,我们关注Baik升分布描述的稳态状态中的电流/高度波动。初始状态顺序参数的条件概率分布显示了从单峰到双峰的过渡。对于由超扩散性冲击动力学主导的负电流/高度波动发生的双峰性发生。它是由两个可能的点对称性冲击曲线和KPZ镜像对称分解引起的。在其他普遍性类别中,初始状态和波动之间的类似令人惊讶的关系也可能存在。
The current/height fluctuation statistics of Kardar-Parisi-Zhang (KPZ) universality in 1+1 dimensions are sensitive to the initial state. We find that the averages over the initial states exhibit universal and scale-invariant patterns when conditioning on fluctuations. To establish universality of our findings we demonstrate scale invariance at different times and heights using large-scale Monte-Carlo simulations of the totally asymmetric simple exclusion process (TASEP) which belongs to the KPZ universality class. Here we focus on current/height fluctuations in the steady state regime described by the Baik-Rains distribution. The conditioned probability distribution of an initial state order parameter shows a transition from uni- to bimodal. Bimodality occurs for negative current/height fluctuations that are dominated by super-diffusive shock dynamics. It is caused by two possible point-symmetric shock profiles and the KPZ mirror symmetry breakdown. Similar surprising relations between initial states and fluctuations might exist in other universality classes as well.