论文标题

孤子和孤子涡流

Solitons and solitonic vortices in a strip

论文作者

Aftalion, Amandine, Sandier, Etienne

论文摘要

我们研究了带有相位的条件的薄层pitaveskii能量的基态,这是由于最近对物质波孤子的实验所激发的。我们证明,当条带的宽度很小时,基态为一维孤子。另一方面,当宽度很大时,基态是孤子涡流。我们为孤子涡流的限制阶段提供了明确的表达,因为条带的大小很大:它具有与无限方向上的孤子相同的行为,并且由于条带的几何形状,而不是代数为整个空间中的涡旋。

We study the ground state of the Gross Pitaveskii energy in a strip, with a phase imprinting condition, motivated by recent experiments on matter waves solitons. We prove that when the width of the strip is small, the ground state is a one dimensional soliton. On the other hand, when the width is large, the ground state is a solitonic vortex. We provide an explicit expression for the limiting phase of the solitonic vortex as the size of the strip is large: it has the same behaviour as the soliton in the infinite direction and decays exponentially due to the geometry of the strip, instead of algebraically as vortices in the whole space.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源