论文标题
孤子和孤子涡流
Solitons and solitonic vortices in a strip
论文作者
论文摘要
我们研究了带有相位的条件的薄层pitaveskii能量的基态,这是由于最近对物质波孤子的实验所激发的。我们证明,当条带的宽度很小时,基态为一维孤子。另一方面,当宽度很大时,基态是孤子涡流。我们为孤子涡流的限制阶段提供了明确的表达,因为条带的大小很大:它具有与无限方向上的孤子相同的行为,并且由于条带的几何形状,而不是代数为整个空间中的涡旋。
We study the ground state of the Gross Pitaveskii energy in a strip, with a phase imprinting condition, motivated by recent experiments on matter waves solitons. We prove that when the width of the strip is small, the ground state is a one dimensional soliton. On the other hand, when the width is large, the ground state is a solitonic vortex. We provide an explicit expression for the limiting phase of the solitonic vortex as the size of the strip is large: it has the same behaviour as the soliton in the infinite direction and decays exponentially due to the geometry of the strip, instead of algebraically as vortices in the whole space.