论文标题
用炒烹饪机器人烹饪:半流体物体的双人性非划和操纵
Robot Cooking with Stir-fry: Bimanual Non-prehensile Manipulation of Semi-fluid Objects
论文作者
论文摘要
这封信描述了一种在双人机器人系统上实现著名的中国烹饪艺术炒作的方法。搅拌需要一系列高度动态的协调运动,通常很难学习厨师,更不用说转移到机器人中了。在这封信中,我们定义了一个规范的搅拌运动,然后提出了一个从人类演示中学习这种可变形物体操纵的脱钩框架。首先,机器人的双臂被分解为不同的角色(领导者和追随者),并通过基于经典和神经网络的方法分别学习,然后将双义任务转换为协调问题。为了获得一般的双人协调,我们第二提出了一个基于图形和变压器的模型 - 结构化转化器,以捕获双臂运动之间的时空关系。最后,通过添加内容变形的视觉反馈,我们的框架可以自动调整运动以达到所需的搅拌效果。我们通过模拟器验证框架,并将其部署在真正的双人熊猫机器人系统上。实验结果验证了我们的框架可以实现双歧式机器人搅拌运动,并有可能扩展到具有双层配位的其他可变形物体。
This letter describes an approach to achieve well-known Chinese cooking art stir-fry on a bimanual robot system. Stir-fry requires a sequence of highly dynamic coordinated movements, which is usually difficult to learn for a chef, let alone transfer to robots. In this letter, we define a canonical stir-fry movement, and then propose a decoupled framework for learning this deformable object manipulation from human demonstration. First, the dual arms of the robot are decoupled into different roles (a leader and follower) and learned with classical and neural network-based methods separately, then the bimanual task is transformed into a coordination problem. To obtain general bimanual coordination, we secondly propose a Graph and Transformer based model -- Structured-Transformer, to capture the spatio-temporal relationship between dual-arm movements. Finally, by adding visual feedback of content deformation, our framework can adjust the movements automatically to achieve the desired stir-fry effect. We verify the framework by a simulator and deploy it on a real bimanual Panda robot system. The experimental results validate our framework can realize the bimanual robot stir-fry motion and have the potential to extend to other deformable objects with bimanual coordination.