论文标题
肯定:基于亲和力融合的迭代式运动校正多片胎儿脑MRI
AFFIRM: Affinity Fusion-based Framework for Iteratively Random Motion correction of multi-slice fetal brain MRI
论文作者
论文摘要
胎儿大脑的多片磁共振图像通常受到严重和任意的胎儿和母体运动的污染。因此,对于重建高分辨率3D胎儿脑体积以进行临床诊断和定量分析,稳定且健壮的运动校正是必要的。但是,常规的基于注册的校正的捕获范围有限,并且不足以检测相对较大的运动。在这里,我们提出了一个新型的基于亲和力融合的框架,以迭代随机运动(肯定)对多层胎儿脑MRI的校正。它从切片的多个堆栈中学习了顺序运动,并使用亲和力融合在2D切片和重建的3D体积之间集成了特征,这类似于常规管道中切片到体积的注册和体积重建之间的迭代。该方法可以准确估算运动,无论大脑方向如何,并且在模拟的运动腐败数据上胜过其他基于最新的学习方法,旋转平均绝对误差的降低了48.4%,位移的平均绝对误差降低了61.3%。然后,我们将肯定的确认纳入了多分辨率的切片登记中,并在不同的妊娠阶段对现实世界中的胎儿MRI扫描进行了测试。结果表明,增加对常规管道的肯定,将胎儿脑超分辨率重建的成功率从77.2%提高到91.9%。
Multi-slice magnetic resonance images of the fetal brain are usually contaminated by severe and arbitrary fetal and maternal motion. Hence, stable and robust motion correction is necessary to reconstruct high-resolution 3D fetal brain volume for clinical diagnosis and quantitative analysis. However, the conventional registration-based correction has a limited capture range and is insufficient for detecting relatively large motions. Here, we present a novel Affinity Fusion-based Framework for Iteratively Random Motion (AFFIRM) correction of the multi-slice fetal brain MRI. It learns the sequential motion from multiple stacks of slices and integrates the features between 2D slices and reconstructed 3D volume using affinity fusion, which resembles the iterations between slice-to-volume registration and volumetric reconstruction in the regular pipeline. The method accurately estimates the motion regardless of brain orientations and outperforms other state-of-the-art learning-based methods on the simulated motion-corrupted data, with a 48.4% reduction of mean absolute error for rotation and 61.3% for displacement. We then incorporated AFFIRM into the multi-resolution slice-to-volume registration and tested it on the real-world fetal MRI scans at different gestation stages. The results indicated that adding AFFIRM to the conventional pipeline improved the success rate of fetal brain super-resolution reconstruction from 77.2% to 91.9%.