论文标题
三$ d $ h(\ m马理{curl})$不重叠域分解的问题
Multigrid methods for 3$D$ $H(\mathbf{curl})$ problems with nonoverlapping domain decomposition smoothers
论文作者
论文摘要
我们提出了v-cycle Multigrid方法,以解决由最低顺序六面体nédélec有限元元素引起的矢量场问题。由于常规的标量平滑技术在问题上不能很好地工作,因此需要一种新型的平滑方法。我们使用非重叠域分解方法基于子结构的基础结构介绍了新的Smoothors。我们提供支持我们理论的收敛分析和数值实验。
We propose V--cycle multigrid methods for vector field problems arising from the lowest order hexahedral Nédélec finite element. Since the conventional scalar smoothing techniques do not work well for the problems, a new type of smoothing method is necessary. We introduce new smoothers based on substructuring with nonoverlapping domain decomposition methods. We provide the convergence analysis and numerical experiments that support our theory.