论文标题

大约有很正常的图

Approximately Strongly Regular Graphs

论文作者

Ihringer, Ferdinand

论文摘要

我们给出了角链结合的变体,并给出具有类似于强规图的频谱的图形的绝对结合。特别是,我们研究了所谓的大约正规图。 我们将结果应用于极端问题。除其他外,我们显示以下内容: (1)$ \ mathrm {pg}(n,q)$中的上限$,外部点上的割线数不会太大变化,最多具有$ o(q^{\ frac34 n})$(作为$ q \ rightArrow \ rightArrow \ rightArrow \ infty \ infty \ infty $ n \ rightarrow \ rightarrow \ rightarrow \ rightarrow \ infty \ infty $)。 (2)最佳伪造$ k_m $ - 订单$ v $和度$ k $的图形图形$ i \ i \ leq m-3 $在公共社区上的诱导子图类似于强烈常规的图形,具有$ k = o(v^{1 - \ frac {1- \ frac {1} {1} {1} {1} {3m-2i-5}}})。

We give variants of the Krein bound and the absolute bound for graphs with a spectrum similar to that of a strongly regular graph. In particular, we investigate what we call approximately strongly regular graphs. We apply our results to extremal problems. Among other things, we show the following: (1) Caps in $\mathrm{PG}(n, q)$ for which the number of secants on exterior points does not vary too much, have size at most $O(q^{\frac34 n})$ (as $q \rightarrow \infty$ or as $n \rightarrow \infty$). (2) Optimally pseudorandom $K_m$-free graphs of order $v$ and degree $k$ for which the induced subgraph on the common neighborhood of a clique of size $i \leq m-3$ is similar to a strongly regular graph, have $k = O(v^{1 - \frac{1}{3m-2i-5}})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源