论文标题

推论任务作为可视化的评估技术

Inferential Tasks as an Evaluation Technique for Visualization

论文作者

Suh, Ashley, Mosca, Ab, Robinson, Shannon, Pham, Quinn, Cashman, Dylan, Ottley, Alvitta, Chang, Remco

论文摘要

设计合适的可视化评估任务仍然具有挑战性。传统评估技术通常依赖于“低级”或“开放式”任务来评估拟议可视化的功效,但是,两者之间存在非平凡的权衡。低级任务允许进行鲁棒的定量评估,但并不能指示可视化的复杂用法。开放式任务虽然非常适合基于洞察的评估,但通常是非结构化的,需要耗时的访谈。弥合这一差距,我们提出了推论任务:基于心理学推论学习的补充任务类别。推论任务产生定量评估数据,其中提示用户以可视化形式形成并验证自己的发现。我们通过对两个众所周知的可视化工具进行了验证实验来证明推论任务的使用。

Designing suitable tasks for visualization evaluation remains challenging. Traditional evaluation techniques commonly rely on 'low-level' or 'open-ended' tasks to assess the efficacy of a proposed visualization, however, nontrivial trade-offs exist between the two. Low-level tasks allow for robust quantitative evaluations, but are not indicative of the complex usage of a visualization. Open-ended tasks, while excellent for insight-based evaluations, are typically unstructured and require time-consuming interviews. Bridging this gap, we propose inferential tasks: a complementary task category based on inferential learning in psychology. Inferential tasks produce quantitative evaluation data in which users are prompted to form and validate their own findings with a visualization. We demonstrate the use of inferential tasks through a validation experiment on two well-known visualization tools.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源