论文标题

单级监督的多级3D对象检测

Multi-Class 3D Object Detection with Single-Class Supervision

论文作者

Ye, Mao, Liu, Chenxi, Yao, Maoqing, Wang, Weiyue, Leng, Zhaoqi, Qi, Charles R., Anguelov, Dragomir

论文摘要

尽管在许多机器人应用中需要多级3D探测器,但使用完全标记的数据集培训它们的标签成本可能很昂贵。另一种方法是在不相交数据样本上靶向单级标签。在本文中,我们有兴趣在使用这些单级标记数据的同时训练多级3D对象检测模型。首先,我们详细介绍了有关相关概念(例如部分监督和半监督)的“单级监督”(SCS)设置的独特立场。然后,基于培训范围稀疏网(RSN)的多级版本的案例研究,我们适应了一系列算法(从监督学习到伪标记),以充分利用SCS设置的特性,并进行广泛的消融研究以识别最有效的算法和实践。 Waymo Open数据集中的经验实验表明,在SCS下进行的适当培训可以接近或匹配完整的监督培训,同时节省标签成本。

While multi-class 3D detectors are needed in many robotics applications, training them with fully labeled datasets can be expensive in labeling cost. An alternative approach is to have targeted single-class labels on disjoint data samples. In this paper, we are interested in training a multi-class 3D object detection model, while using these single-class labeled data. We begin by detailing the unique stance of our "Single-Class Supervision" (SCS) setting with respect to related concepts such as partial supervision and semi supervision. Then, based on the case study of training the multi-class version of Range Sparse Net (RSN), we adapt a spectrum of algorithms -- from supervised learning to pseudo-labeling -- to fully exploit the properties of our SCS setting, and perform extensive ablation studies to identify the most effective algorithm and practice. Empirical experiments on the Waymo Open Dataset show that proper training under SCS can approach or match full supervision training while saving labeling costs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源