论文标题
使用矢量化的化学整合加速反应流量模拟
Accelerating reactive-flow simulations using vectorized chemistry integration
论文作者
论文摘要
化学整合的高成本是使用操作员拆分的逼真的反应流仿真的重要计算瓶颈。在这里,我们提出了一种方法,可以使用OpenCL框架在CPU上使用单一指导,多DATA矢量处理来加速化学动力学普通微分方程的溶液。首先,我们使用PyJAC软件的化学动力学源术语和分析性雅各布人与广泛使用的集成代码CVODE进行了比较了几种矢量化集成算法。接下来,我们扩展了OpenFOAM计算流体动力学库以结合了矢量化的求解器,并比较了第四阶线性隐式集成器的准确性 - 既有矢量化形式,又是对OpenFOAM的相应方法 - 与社区标准化学动力学库Cantera。然后,我们将方法应用于各种化学动力学模型,湍流强度和模拟量表,以检查一系列的工程和科学量表问题,包括(伪)稳态以及时间依赖于雷诺的雷诺(Reynolds Parynolds Parynolds Parter)的Navier-Stopokes Sandia Flame D和Volvo FlyGmotor bluff-bluff-bluff-bly-by flame,Promecix-Premix flame flame,Promper flame flame flame flame flame,Premix prombode。随后,我们在研究的模型和模拟上比较了矢量化和天然OpenFOAM积分器的性能,并发现我们的矢量化方法的性能比本机openfoam求解器的速度高33--35倍,其精度很高。
The high cost of chemistry integration is a significant computational bottleneck for realistic reactive-flow simulations using operator splitting. Here we present a methodology to accelerate the solution of the chemical kinetic ordinary differential equations using single-instruction, multiple-data vector processing on CPUs using the OpenCL framework. First, we compared several vectorized integration algorithms using chemical kinetic source terms and analytical Jacobians from the pyJac software against a widely used integration code, CVODEs. Next, we extended the OpenFOAM computational fluid dynamics library to incorporate the vectorized solvers, and we compared the accuracy of a fourth-order linearly implicit integrator -- both in vectorized form and a corresponding method native to OpenFOAM -- with the community standard chemical kinetics library Cantera. We then applied our methodology to a variety of chemical kinetic models, turbulent intensities, and simulation scales to examine a range of engineering and scientific scale problems, including (pseudo) steady-state as well as time-dependent Reynolds-averaged Navier--Stokes simulations of the Sandia flame D and the Volvo Flygmotor bluff-body stabilized, premixed flame. Subsequently, we compared the performance of the vectorized and native OpenFOAM integrators over the studied models and simulations and found that our vectorized approach performs up to 33--35x faster than the native OpenFOAM solver with high accuracy.