论文标题
降低的差异相关性
Variance of the Hellings-Downs Correlation
论文作者
论文摘要
重力波(GWS)在来自不同脉冲星的脉冲的到达时间中产生相关性。预期的相关性$μ(γ)$作为指示与两个脉冲星之间的角度$γ$的函数,是通过异位和脱糖的GW背景来计算的,而唐斯则计算了几个脉冲星时阵列(PTA)合作,正在努力观察这些。我们问:考虑到一组无噪声观察,它们是否与期望一致?为了回答这个问题,我们计算单个GW点源的相关性中的预期方差$σ^2(γ)$,因为具有固定分离角$γ$的PULSAR对被扫荡在天空周围。然后,我们将其用于得出一个简单的分析表达式,以针对两种感兴趣的一个均匀分散在空间中均匀散布的离散点源产生的方差,以供两种感兴趣的情况:(1)点源以相同的频率辐射GW,产生混淆噪声,以及(2)点源在不同的非过期频率下辐射GWS的点源。通过在固定分离角$γ$上平均所有PULSAR天空位置,我们表明该方差如何被干净地分为宇宙方差和脉冲星方差,还表明该方差的测量值可以提供有关GW源性质的信息。在一系列技术附录中,我们计算了任意(极化)点源的地狱降低相关性的平均值和方差,量化了忽略脉冲星术语的影响,并计算出高斯合奏的脉冲星和宇宙方差。高斯集合的平均值和差异也可以从先前的离散源混乱噪声模型中获得,以高度弱源密度的极限。
Gravitational waves (GWs) create correlations in the arrival times of pulses from different pulsars. The expected correlation $μ(γ)$ as a function of the angle $γ$ between the directions to two pulsars was calculated by Hellings and Downs for an isotropic and unpolarized GW background, and several pulsar timing array (PTA) collaborations are working to observe these. We ask: given a set of noise-free observations, are they consistent with that expectation? To answer this, we calculate the expected variance $σ^2(γ)$ in the correlation for a single GW point source, as pulsar pairs with fixed separation angle $γ$ are swept around the sky. We then use this to derive simple analytic expressions for the variance produced by a set of discrete point sources uniformly scattered in space for two cases of interest: (1) point sources radiating GWs at the same frequency, generating confusion noise, and (2) point sources radiating GWs at distinct non-overlapping frequencies. By averaging over all pulsar sky positions at fixed separation angle $γ$, we show how this variance may be cleanly split into cosmic variance and pulsar variance, also demonstrating that measurements of the variance can provide information about the nature of GW sources. In a series of technical appendices, we calculate the mean and variance of the Hellings-Downs correlation for an arbitrary (polarized) point source, quantify the impact of neglecting pulsar terms, and calculate the pulsar and cosmic variance for a Gaussian ensemble. The mean and variance of the Gaussian ensemble may also be obtained from the previous discrete-source confusion-noise model in the limit of a high density of weak sources.