论文标题

使用配置文件可能性,从$ planck $和二头肌/凯克阵列数据对张量与量表比的新约束。

New constraint on the tensor-to-scalar ratio from the $Planck$ and BICEP/Keck Array data using the profile likelihood

论文作者

Campeti, Paolo, Komatsu, Eiichiro

论文摘要

我们使用频繁的配置文件可能性方法在张量与标准比率参数$ r $上得出了一个新的上限。我们改变了$λ$ CDM模型的所有相关宇宙学参数以及滋扰参数。与使用马尔可夫链蒙特卡洛(MCMC)的贝叶斯分析不同,我们的分析与先验的选择无关。使用$ Planck $公共发行版,二头肌/凯克阵列2018,$ PLANCK $ CMB镜头和BAO数据,我们发现上限$ r <0.037 $ <0.037 $,在95%C.L.上,类似于Bayesian MCMC的$ r <0.038 $的$ r <0.038 $的$ r $ r $ $ r $ $ r $ $ $ $ $ $ $ $ $ PLANCK COVARCIANCE $ r <0.038 $。

We derive a new upper bound on the tensor-to-scalar ratio parameter $r$ using the frequentist profile likelihood method. We vary all the relevant cosmological parameters of the $Λ$CDM model, as well as the nuisance parameters. Unlike the Bayesian analysis using Markov Chain Monte Carlo (MCMC), our analysis is independent of the choice of priors. Using $Planck$ Public Release 4, BICEP/Keck Array 2018, $Planck$ CMB lensing, and BAO data, we find an upper limit of $r<0.037$ at 95% C.L., similar to the Bayesian MCMC result of $r<0.038$ for a flat prior on $r$ and a conditioned $Planck$ lowlEB covariance matrix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源