论文标题

一个简单的物质学习阶段的框架

A simple framework for contrastive learning phases of matter

论文作者

Han, Xiao-Qi, Xu, Sheng-Song, Feng, Zhen, He, Rong-Qiang, Lu, Zhong-Yi

论文摘要

凝结物理学的一项主要任务是识别,分类和表征物质阶段以及相应的相转换,由于计算能力和算法的显着发展,机器学习提供了新的研究工具。尽管在这个新领域进行了很多探索,但对于不同的情况来说,通常需要不同的方法和技术。在这里,我们介绍了SIMCLP:物质对比学习阶段的简单框架,这是受视觉表示对比度学习的最新发展的启发。我们证明了该框架在几个代表性系统上的成功,包括经典和量子,单粒子以及多体,常规和拓扑。 SIMCLP具有灵活性,并且没有通常的负担,例如手动功能工程和先验知识。唯一的先决条件是准备足够的状态配置。此外,它可以生成表示向量和标签,因此有助于解决其他问题。因此,SIMCLP铺平了一种开发通用工具来识别未开发的相变的替代方法。

A main task in condensed-matter physics is to recognize, classify, and characterize phases of matter and the corresponding phase transitions, for which machine learning provides a new class of research tools due to the remarkable development in computing power and algorithms. Despite much exploration in this new field, usually different methods and techniques are needed for different scenarios. Here, we present SimCLP: a simple framework for contrastive learning phases of matter, which is inspired by the recent development in contrastive learning of visual representations. We demonstrate the success of this framework on several representative systems, including classical and quantum, single-particle and many-body, conventional and topological. SimCLP is flexible and free of usual burdens such as manual feature engineering and prior knowledge. The only prerequisite is to prepare enough state configurations. Furthermore, it can generate representation vectors and labels and hence help tackle other problems. SimCLP therefore paves an alternative way to the development of a generic tool for identifying unexplored phase transitions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源