论文标题
微循环分析的深度学习和计算机视觉技术:评论
Deep Learning and Computer Vision Techniques for Microcirculation Analysis: A Review
论文作者
论文摘要
微循环图像的分析有可能揭示败血症等威胁生命的疾病的早期迹象。量化微循环图像中的毛细管密度和毛细血管分布可以用作生物标记,以帮助重症患者。这些生物标记物的量化是劳动密集型,耗时的,并且可能会发生观察者间的变异性。鉴于既定的挑战,可以使用几种具有不同性能的计算机视觉技术来自动对这些微循环图像的分析。在本文中,我们介绍了50多个研究论文的调查,并介绍了最相关,最有前途的计算机视觉算法,以使微循环图像分析自动化。此外,我们介绍了其他研究人员当前使用的方法来自动进行微循环图像分析的调查。这项调查具有很高的临床相关性,因为它是其他研究人员开发其微循环分析系统和算法的技术指南。
The analysis of microcirculation images has the potential to reveal early signs of life-threatening diseases like sepsis. Quantifying the capillary density and the capillary distribution in microcirculation images can be used as a biological marker to assist critically ill patients. The quantification of these biological markers is labor-intensive, time-consuming, and subject to interobserver variability. Several computer vision techniques with varying performance can be used to automate the analysis of these microcirculation images in light of the stated challenges. In this paper, we present a survey of over 50 research papers and present the most relevant and promising computer vision algorithms to automate the analysis of microcirculation images. Furthermore, we present a survey of the methods currently used by other researchers to automate the analysis of microcirculation images. This survey is of high clinical relevance because it acts as a guidebook of techniques for other researchers to develop their microcirculation analysis systems and algorithms.