论文标题

在热对流中过渡到三维流,随着旋转的旋转

Transition to three dimensional flow in thermal convection with spanwise rotation

论文作者

Lüdemann, K., Tilgner, A.

论文摘要

我们通过在旋转的矩形细胞中通过直接数值模拟雷利 - 贝纳德对流进行调查,旋转载体和重力彼此垂直。对流的开始附近的流量为二维,对流辊平行于边界的旋转轴对齐。在足够大的雷利数字上,流动对三维干扰变得不稳定,这会改变热传输和动能的缩放,并使用瑞利数量。导致不稳定性的机制被确定为椭圆形的不稳定性。在过渡时,基于流的动能的雷诺和罗斯比数字$ \ mathrm {re} $和$ \ mathrm {ro} $与$ \ mathrm {re} \ propto \ mathrm {re} \ mathrm {ro}^{ro}^{ - 2} $ at small $ \ mathrm mathrm per ate a ge a a ge a e e a ge ate a progy。

We investigate by direct numerical simulation Rayleigh-Bénard convection in a rotating rectangular cell with rotation vector and gravity perpendicular to each other. The flow is two dimensional near the onset of convection with convection rolls aligned parallel to the rotation axis of the boundaries. At a sufficiently large Rayleigh number, the flow becomes unstable to three dimensional disturbances which changes the scaling of heat transport and kinetic energy with Rayleigh number. The mechanism leading to the instability is identified as an elliptical instability. At the transition, the Reynolds and Rossby numbers $\mathrm{Re}$ and $\mathrm{Ro}$ based on the kinetic energy of the flow are related by $\mathrm{Re} \propto \mathrm{Ro}^{-2}$ at small $\mathrm{Ro}$ with a geometry dependent prefactor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源