论文标题
精炼:在微调之前重新调整跨域的少量学习
ReFine: Re-randomization before Fine-tuning for Cross-domain Few-shot Learning
论文作者
论文摘要
跨域很少的学习(CD-FSL)最近几乎没有目标样本在源和目标域之间存在极端差异,最近引起了极大的关注。关于CD-FSL的最新研究通常集中在基于转移学习的方法上,其中神经网络已在流行的标记源域数据集上预先训练,然后转移到目标域数据。尽管标记的数据集可以为目标数据提供合适的初始参数,但源和目标之间的域差异可能会阻碍目标域上的微调。本文提出了一种简单而功能强大的方法,该方法在适应目标数据之前将源域上拟合的参数重新传递。重新运行重置源预训练模型的特定于源特异性参数,从而促进了目标域上的微调,从而提高了少数射击性能。
Cross-domain few-shot learning (CD-FSL), where there are few target samples under extreme differences between source and target domains, has recently attracted huge attention. Recent studies on CD-FSL generally focus on transfer learning based approaches, where a neural network is pre-trained on popular labeled source domain datasets and then transferred to target domain data. Although the labeled datasets may provide suitable initial parameters for the target data, the domain difference between the source and target might hinder fine-tuning on the target domain. This paper proposes a simple yet powerful method that re-randomizes the parameters fitted on the source domain before adapting to the target data. The re-randomization resets source-specific parameters of the source pre-trained model and thus facilitates fine-tuning on the target domain, improving few-shot performance.