论文标题
二聚体,网和本地系统
Dimers, webs, and local systems
论文作者
论文摘要
对于配备了$ \ mathrm {sl} _n $ local系统的平面两分图$ \ mathcal g $,我们表明,相关的kasteleyn矩阵的决定因素计数“ $ n $ -n $ -multiwebs”($ n $ n $ n $ -webs的概括)在$ \ nathcal g $ $ \ n $ \ n $ \ n $ \ n $ \ mathcal g $,由他们的网络供应。我们使用这个事实来研究一些简单表面上的随机$ n $ -multiwebs。
For a planar bipartite graph $\mathcal G$ equipped with a $\mathrm{SL}_n$-local system, we show that the determinant of the associated Kasteleyn matrix counts "$n$-multiwebs" (generalizations of $n$-webs) in $\mathcal G$, weighted by their web-traces. We use this fact to study random $n$-multiwebs in graphs on some simple surfaces.