论文标题
对人类决策中可解释的人工智能的实用性的荟萃分析
A Meta-Analysis of the Utility of Explainable Artificial Intelligence in Human-AI Decision-Making
论文作者
论文摘要
人工智能(AI)协助决策的研究正在经历巨大的增长,并且不断增加的研究数量不断增加,评估了AI的影响,并且没有可解释的AI(XAI)对人类决策绩效领域的影响。但是,随着任务和实验设置因目标的不同而有所不同,一些研究报告了通过XAI提高了用户决策绩效,而其他研究则报告的效果可忽略不计。因此,在本文中,我们使用统计荟萃分析对XAI研究的现有研究进行了初步综合,从而在现有研究中产生了含义。我们观察到XAI对用户性能的统计积极影响。此外,第一个结果表明,人类的决策倾向于在文本数据上产生更好的任务绩效。但是,与唯一的AI预测相比,我们发现没有解释对用户性能的影响。我们最初的综合促进了未来的研究,研究了基本原因,并有助于进一步开发算法,从而通过提供有意义的解释来有效地使人类决策者受益。
Research in artificial intelligence (AI)-assisted decision-making is experiencing tremendous growth with a constantly rising number of studies evaluating the effect of AI with and without techniques from the field of explainable AI (XAI) on human decision-making performance. However, as tasks and experimental setups vary due to different objectives, some studies report improved user decision-making performance through XAI, while others report only negligible effects. Therefore, in this article, we present an initial synthesis of existing research on XAI studies using a statistical meta-analysis to derive implications across existing research. We observe a statistically positive impact of XAI on users' performance. Additionally, the first results indicate that human-AI decision-making tends to yield better task performance on text data. However, we find no effect of explanations on users' performance compared to sole AI predictions. Our initial synthesis gives rise to future research investigating the underlying causes and contributes to further developing algorithms that effectively benefit human decision-makers by providing meaningful explanations.