论文标题
Fasthare:大规模量子退火的快速汉密尔顿减少
FastHare: Fast Hamiltonian Reduction for Large-scale Quantum Annealing
论文作者
论文摘要
编码优化问题的量子退火(QA)仍然是唯一的近期量子计算范式,为现实世界应用提供了足够的许多量子位。为了适合现有量子退火器的更大的优化实例,将哈密顿量减少到较小的同等汉密尔顿人中提供了一种有希望的方法。不幸的是,现有的还原技术在计算上是昂贵的,或者在实践中是无效的。为此,我们介绍了一个新颖的非分离〜群体概念,该概念定义为在哈密顿量中获得的量子组,该量子在最佳溶液中获得了相同的值。我们相应地开发了一个关于不可分割性的理论框架,并提出了Fasthare,这是一种高效的还原方法。 Fasthare,迭代地检测并合并了不可分割的组成单量子。对于某些用户定义的参数$α$,它在仅$ o(αn^2)$的可证明的最差时间复杂性中这样做。我们对降低可行性的广泛基准是在MQLIB库中的合成汉密尔顿人和3000多个实例上完成的。结果表明,Fasthare优于屋顶二元性,这是D-Wave的SDK库中实施的还原方法,平均降低率高3.6倍。它表现出很高的有效性,平均节省了62%的量子位和0.3s的处理时间,并提倡减少汉密尔顿的减少,这是QA的廉价必要性。
Quantum annealing (QA) that encodes optimization problems into Hamiltonians remains the only near-term quantum computing paradigm that provides sufficient many qubits for real-world applications. To fit larger optimization instances on existing quantum annealers, reducing Hamiltonians into smaller equivalent Hamiltonians provides a promising approach. Unfortunately, existing reduction techniques are either computationally expensive or ineffective in practice. To this end, we introduce a novel notion of non-separable~group, defined as a subset of qubits in a Hamiltonian that obtains the same value in optimal solutions. We develop a theoretical framework on non-separability accordingly and propose FastHare, a highly efficient reduction method. FastHare, iteratively, detects and merges non-separable groups into single qubits. It does so within a provable worst-case time complexity of only $O(αn^2)$, for some user-defined parameter $α$. Our extensive benchmarks for the feasibility of the reduction are done on both synthetic Hamiltonians and 3000+ instances from the MQLIB library. The results show FastHare outperforms the roof duality, the implemented reduction method in D-Wave's SDK library, with 3.6x higher average reduction ratio. It demonstrates a high level of effectiveness with an average of 62% qubits saving and 0.3s processing time, advocating for Hamiltonian reduction as an inexpensive necessity for QA.