论文标题

Allsh:以当地敏感性和硬度为指导的积极学习

ALLSH: Active Learning Guided by Local Sensitivity and Hardness

论文作者

Zhang, Shujian, Gong, Chengyue, Liu, Xingchao, He, Pengcheng, Chen, Weizhu, Zhou, Mingyuan

论文摘要

积极学习有效地收集了无标记的数据以进行注释,可以减少对标记数据的需求。在这项工作中,我们建议以局部灵敏度和硬度感知的获取功能检索未标记的样品。所提出的方法通过局部扰动生成数据副本,并选择其预测可能性与其副本最大的数据点。我们通过注入选择的情况扰动来进一步增强我们的采集功能。我们的方法可以在各种分类任务中使用常用的活跃学习策略获得一致的收益。此外,我们在基于及时的几次学习中迅速选择的研究中观察到对基准的一致改进。这些实验表明,我们以局部敏感性和硬度为指导的获取对许多NLP任务都是有效和有益的。

Active learning, which effectively collects informative unlabeled data for annotation, reduces the demand for labeled data. In this work, we propose to retrieve unlabeled samples with a local sensitivity and hardness-aware acquisition function. The proposed method generates data copies through local perturbations and selects data points whose predictive likelihoods diverge the most from their copies. We further empower our acquisition function by injecting the select-worst case perturbation. Our method achieves consistent gains over the commonly used active learning strategies in various classification tasks. Furthermore, we observe consistent improvements over the baselines on the study of prompt selection in prompt-based few-shot learning. These experiments demonstrate that our acquisition guided by local sensitivity and hardness can be effective and beneficial for many NLP tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源