论文标题

湍流中粒子沉积的多余性不确定性定量

Multi-fidelity uncertainty quantification of particle deposition in turbulent pipe flow

论文作者

Yao, Yuan, Huan, Xun, Capecelatro, Jesse

论文摘要

考虑到电荷,范德华强度和温度效应的不确定性,量化了完全发达的湍流流量中的粒子沉积。提出了一个框架,用于通过多志愿蒙特卡洛方法在多相流系统中获得基于方差的灵敏度,该方法可以最佳地管理给定计算预算的模型评估。该方法将基于直接数值模拟和基于两相流的一维欧拉描述的较低阶模型结合了一个高保真模型。与经典的蒙特卡洛估计相比,获得了显着的加速。发现沉积对静电相互作用最敏感,并且对中型(即中度Stokes数)颗粒表现出最大的不确定性。

Particle deposition in fully-developed turbulent pipe flow is quantified taking into account uncertainty in electric charge, van der Waals strength, and temperature effects. A framework is presented for obtaining variance-based sensitivity in multiphase flow systems via a multi-fidelity Monte Carlo approach that optimally manages model evaluations for a given computational budget. The approach combines a high-fidelity model based on direct numerical simulation and a lower-order model based on a one-dimensional Eulerian description of the two-phase flow. Significant speedup is obtained compared to classical Monte Carlo estimation. Deposition is found to be most sensitive to electrostatic interactions and exhibits largest uncertainty for mid-sized (i.e., moderate Stokes number) particles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源