论文标题
通过混合量子计算实用的应用特定优势
Practical application-specific advantage through hybrid quantum computing
论文作者
论文摘要
量子计算有望解决古典计算机无法克服的技术和工业问题。但是,当今的量子计算机仍然具有有限的可证明功能,并且预计他们必须为他们辜负这种吹捧的承诺所需的规模多达数百万个。实现实用量子优势目标的可行途径是实施一种混合操作模式,以实现量子和古典计算机的凝聚力。在这里,我们提出了一个基于以内存为中心和异质的多处理体系结构的混合量子云,该体系结构集成到高性能计算数据中心等级环境中。我们证明,利用量子云,包括量子编码(QUENC),混合量子神经网络(QUENC)和张量网络在内的混合量子算法可以在优化,机器学习和仿真字段方面具有优势。我们在解决方案的计算速度和质量中,与标准经典算法相比,混合算法的优势与标准的经典算法相比。在混合量子硬件和软件中所取得的进步使量子计算在当今实践中有用。
Quantum computing promises to tackle technological and industrial problems insurmountable for classical computers. However, today's quantum computers still have limited demonstrable functionality, and it is expected that scaling up to millions of qubits is required for them to live up to this touted promise. The feasible route in achieving practical quantum advantage goals is to implement a hybrid operational mode that realizes the cohesion of quantum and classical computers. Here we present a hybrid quantum cloud based on a memory-centric and heterogeneous multiprocessing architecture, integrated into a high-performance computing data center grade environment. We demonstrate that utilizing the quantum cloud, our hybrid quantum algorithms including Quantum Encoding (QuEnc), Hybrid Quantum Neural Networks and Tensor Networks enable advantages in optimization, machine learning, and simulation fields. We show the advantage of hybrid algorithms compared to standard classical algorithms in both the computational speed and quality of the solution. The achieved advance in hybrid quantum hardware and software makes quantum computing useful in practice today.