论文标题
将广义计划扩展为具有地标的启发式搜索
Scaling-up Generalized Planning as Heuristic Search with Landmarks
论文作者
论文摘要
地标是古典规划中最有效的搜索启发式方法之一,但在广义计划中很大程度上被忽略了。通常在给定的算法解决方案的给定空间中将广义计划(GP)作为组合搜索,其中评估了候选解决方案W.R.T.〜它们解决的实例。这种类型的解决方案评估忽略了在计划实例表示中没有明确的任何次目标信息,从而在候选人广义计划的空间中引起了高原。此外,GP中的节点扩展是一个运行时的瓶颈,因为它需要在GP问题中评估整个经典计划实例中的每个儿童节点。在本文中,我们为GP定义了具有里程碑意义的计算启发式(考虑到计划实例中未明确表示的次目标信息),以及用于GP(我们称为PGP)的新型启发式搜索算法,并逐步处理GP问题计划实例的子集。在一项消融研究中分析了我们的两个正交贡献,这表明既可以改善GP作为启发式搜索的最新作品,又可以在组合使用时彼此受益。
Landmarks are one of the most effective search heuristics for classical planning, but largely ignored in generalized planning. Generalized planning (GP) is usually addressed as a combinatorial search in a given space of algorithmic solutions, where candidate solutions are evaluated w.r.t.~the instances they solve. This type of solution evaluation ignores any sub-goal information that is not explicit in the representation of the planning instances, causing plateaus in the space of candidate generalized plans. Furthermore, node expansion in GP is a run-time bottleneck since it requires evaluating every child node over the entire batch of classical planning instances in a GP problem. In this paper we define a landmark counting heuristic for GP (that considers sub-goal information that is not explicitly represented in the planning instances), and a novel heuristic search algorithm for GP (that we call PGP) and that progressively processes subsets of the planning instances of a GP problem. Our two orthogonal contributions are analyzed in an ablation study, showing that both improve the state-of-the-art in GP as heuristic search, and that both benefit from each other when used in combination.