论文标题
有效的爆发原始deNoing,具有差异稳定和多频降解网络
Efficient Burst Raw Denoising with Variance Stabilization and Multi-frequency Denoising Network
论文作者
论文摘要
随着智能手机的日益普及,捕获高质量的图像对于智能手机至关重要。智能手机的相机具有较小的光圈和小的传感器单元,可导致弱光环境中的嘈杂图像。基于多个帧的脱氧水平通常优于单一框架,但计算成本较大。在本文中,我们提出了一个有效而有效的爆发deNoising系统。我们采用三阶段的设计:噪声事先集成,多帧对齐和多框架DeNoising。首先,我们通过将原始信号预处理到方差稳定空间中,将噪声整合到先验中,该信号允许使用小规模的网络实现竞争性能。其次,我们观察到必须采用明确的一致性来进行爆发,但是不必集成基于学习的方法来执行多帧对齐。取而代之的是,我们求助于常规,有效的一致性方法,并将其与我们的多框架DeNoising网络相结合。最后,我们提出了一种替代策略,该策略顺序处理多个帧。顺序denoings通过将多个降级为几个有效的子网络降解来避免过滤大量帧。至于每个子网络,我们提出了一个有效的多频去胶化网络,以消除不同频率的噪声。我们的三阶段设计是有效的,并且在爆发denoising方面表现出很强的表现。关于合成和真实RAW数据集的实验表明,我们的方法优于最先进的方法,计算成本较少。此外,低复杂性和高质量的性能使在智能手机上的部署成为可能。
With the growing popularity of smartphones, capturing high-quality images is of vital importance to smartphones. The cameras of smartphones have small apertures and small sensor cells, which lead to the noisy images in low light environment. Denoising based on a burst of multiple frames generally outperforms single frame denoising but with the larger compututional cost. In this paper, we propose an efficient yet effective burst denoising system. We adopt a three-stage design: noise prior integration, multi-frame alignment and multi-frame denoising. First, we integrate noise prior by pre-processing raw signals into a variance-stabilization space, which allows using a small-scale network to achieve competitive performance. Second, we observe that it is essential to adopt an explicit alignment for burst denoising, but it is not necessary to integrate a learning-based method to perform multi-frame alignment. Instead, we resort to a conventional and efficient alignment method and combine it with our multi-frame denoising network. At last, we propose a denoising strategy that processes multiple frames sequentially. Sequential denoising avoids filtering a large number of frames by decomposing multiple frames denoising into several efficient sub-network denoising. As for each sub-network, we propose an efficient multi-frequency denoising network to remove noise of different frequencies. Our three-stage design is efficient and shows strong performance on burst denoising. Experiments on synthetic and real raw datasets demonstrate that our method outperforms state-of-the-art methods, with less computational cost. Furthermore, the low complexity and high-quality performance make deployment on smartphones possible.