论文标题

相变的几何理论

The Geometric Theory of Phase Transitions

论文作者

Di Cairano, Loris

论文摘要

我们开发了微型集合中哈密顿系统的相变(PTS)的几何理论。该理论允许根据与哈密顿功能相关的能级集(ELSS)的几何特性(ELSS)对Bachmann对有限大小系统的PT进行分类。具体而言,通过将微型熵定义为配备合适度量张量的ELS体积的对数,我们获得了热力学和几何形状之间的确切等效性。实际上,我们表明,相对于能量变量的任何熵的衍生物都可以与ELS的几何曲率结构的特定组合相关联,而ELS的几何曲率结构又是电位函数衍生物的精确组合。通过这种方式,我们建立了哈密顿量提供的显微镜描述与PT中出现的集体行为之间的直接联系。最后,我们还分析了ELSS几何形状在热力学极限中的行为,表明熵的能量衍生物的非分析性是由ELS在过渡点附近某些几何特性的非分析性引起的。最后,我们验证了研究$ ϕ^4 $和Ginzburg-Landau模型中发生的PT的理论。

We develop a geometric theory of phase transitions (PTs) for Hamiltonian systems in the microcanonical ensemble. This theory allows to reformulate Bachmann's classification of PTs for finite-size systems in terms of geometric properties of the energy level sets (ELSs) associated to the Hamiltonian function. Specifically, by defining the microcanonical entropy as the logarithm of the ELS's volume equipped with a suitable metric tensor, we obtain an exact equivalence between thermodynamics and geometry. In fact, we show that any derivative of entropy with respect to the energy variable can be associated to a specific combination of geometric curvature structures of the ELSs which, in turn, are precise combinations of the potential function derivatives. In this way, we establish a direct connection between the microscopic description provided by the Hamiltonian and the collective behavior which emerges in a PT. Finally, we also analyze the behavior of the ELSs' geometry in the thermodynamic limit, showing that non-analyticities of the energy-derivatives of the entropy are caused by non-analyticities of certain geometric properties of the ELSs around the transition point. Finally, we validate the theory studying the PTs that occur in the $ϕ^4$ and Ginzburg-Landau-like models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源