论文标题

用于在主动脉缩写中个性化支架的硅建模中

In silico modeling for personalized stenting in aortic coarctation

论文作者

Ma, Dandan, Wang, Yong, Azhar, Mueed, Adler, Ansgar, Steinmetz, Michael, Uecker, Martin

论文摘要

支架干预是一种建议降低压力梯度并恢复主动脉缩减(COA)患者的血流的疗法。在这项工作中,我们开发了一个用于使用硅建模中的个性化支架干预COA的框架,结合了计算流体动力学(CFD)和支架干预后主动脉几何形状的基于图像的预测。首先,主动脉中的几何形状是通过磁共振成像(MRI)数据重建的,它是使用晶状体玻尔兹曼方法(LBM)进行数值建模的。大型涡流模拟(LES)和直接数值模拟(DNS)都被认为可以充分解析湍流血流动力学,并从相对比对比度流MRI中提取边界条件。通过比较3D打印流幻象中CFD和4D-Flow MRI的结果,我们得出结论,基于LBM的LES能够获得具有可接受的计算成本的准确主动脉流。然后,通过预测支架干预后的变形几何形状并预测血液流动后,对具有COA患者的患者进行了植入。通过评估压降和最大壁剪应力,可以选择最佳支架。

Stent intervention is a recommended therapy to reduce the pressure gradient and restore blood flow for patients with coarctation of the aorta (CoA). In this work, we developed a framework for personalized stent intervention in CoA using in silico modeling, combining computational fluid dynamics (CFD) and image-based prediction of the geometry of the aorta after stent intervention. Firstly, the blood flow in the aorta, whose geometry was reconstructed from magnetic resonance imaging (MRI) data, was numerically modeled using the lattice Boltzmann method (LBM). Both large eddy simulation (LES) and direct numerical simulation (DNS) were considered to adequately resolve the turbulent hemodynamics, with boundary conditions extracted from phase-contrast flow MRI. By comparing the results from CFD and 4D-Flow MRI in 3D-printed flow phantoms, we concluded that the LBM based LES is capable of obtaining accurate aortic flow with acceptable computational cost. In silico stent implantation for a patient with CoA was then performed by predicting the deformed geometry after stent intervention and predicting the blood flow. By evaluating the pressure drop and maximum wall shear stress, an optimal stent can be selected.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源