论文标题

次要的功率终点分级和重新调整,以重新召开“ gluon”推力

Next-to-leading power endpoint factorization and resummation for off-diagonal "gluon" thrust

论文作者

Beneke, M., Garny, M., Jaskiewicz, S., Strohm, J., Szafron, R., Vernazza, L., Wang, J.

论文摘要

在近代领导功率(NLP)分解定理中缺乏卷积积分的融合,可以阻止现有方法在对撞机物理学中恢复功率支持的大型对数校正。我们考虑在两射流区域的推力分布,用于非对角线的非洲词,其中Gluon发射的射流后座对夸克 - 易夸克对,该Quark-Antiquark对被施加了功率。借助操作端点分解条件,我们获得了一个分解公式,其中单个项在卷积中没有端点差异,并且可以用重新归一化的硬化,软和共线功能在四个维度上表示。这使我们能够使用专门的重量化组方法在领先的对数准确度上执行端点 - divergent scet $ _ {\ rm i} $ observables的第一个重新启动。提出的方法依赖于软限制的通用属性,可以作为其他$ 1 \ 2 $和$ 2 $和$ 2 \至1 $对撞机物理学过程的系统性NLP重新召集的范例。

The lack of convergence of the convolution integrals appearing in next-to-leading-power (NLP) factorization theorems prevents the applications of existing methods to resum power-suppressed large logarithmic corrections in collider physics. We consider thrust distribution in the two-jet region for the flavour-nonsinglet off-diagonal contribution, where a gluon-initiated jet recoils against a quark-antiquark pair, which is power-suppressed. With the help of operatorial endpoint factorization conditions, we obtain a factorization formula, where the individual terms are free from endpoint divergences in convolutions and can be expressed in terms of renormalized hard, soft and collinear functions in four dimensions. This allows us to perform the first resummation of the endpoint-divergent SCET$_{\rm I}$ observables at the leading logarithmic accuracy using exclusively renormalization-group methods. The presented approach relies on universal properties of the soft and collinear limits and may serve as a paradigm for the systematic NLP resummation for other $1\to 2$ and $2\to 1$ collider physics processes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源