论文标题

可区分的电子显微镜模拟:可视化的方法和应用

Differentiable Electron Microscopy Simulation: Methods and Applications for Visualization

论文作者

Nguyen, Ngan, Liang, Feng, Engel, Dominik, Bohak, Ciril, Wonka, Peter, Ropinski, Timo, Viola, Ivan

论文摘要

我们提出了一个新的显微镜模拟系统,该系统可以以显微照片的视觉方式描绘原子模型,类似于物理电子显微镜成像的结果。该系统是可扩展的,能够代表数十个病毒颗粒的电子显微镜模拟,并比以前的方法更快地合成图像。最重要的是,模拟器是可区分的,它的确定性和随机阶段都形成了显微照片中的信号和噪声表示。该知名属性具有通过优化解决反问题的能力,因此可以使用从实际数据估算的参数设置来生成显微镜模拟。我们通过两个应用程序证明了这种学习能力:(1)估计定义模拟和真实显微照片的检测器属性的调制传输函数的参数,以及(2)基于从模拟示例训练的参数来确定真实数据。尽管当前的模拟器由于其正向设计不支持任何参数估计,但我们表明使用估计参数获得的结果与真实显微照片的结果非常相似。此外,我们评估了我们方法的可转换能力,并表明结果表明对最先进的方法有所改善。在倾斜系列断层扫描重建中,脱氧显微照片表现出更少的噪声,最终降低了显微镜断层图直接体积渲染中噪声的视觉优势。

We propose a new microscopy simulation system that can depict atomistic models in a micrograph visual style, similar to results of physical electron microscopy imaging. This system is scalable, able to represent simulation of electron microscopy of tens of viral particles and synthesizes the image faster than previous methods. On top of that, the simulator is differentiable, both its deterministic as well as stochastic stages that form signal and noise representations in the micrograph. This notable property has the capability for solving inverse problems by means of optimization and thus allows for generation of microscopy simulations using the parameter settings estimated from real data. We demonstrate this learning capability through two applications: (1) estimating the parameters of the modulation transfer function defining the detector properties of the simulated and real micrographs, and (2) denoising the real data based on parameters trained from the simulated examples. While current simulators do not support any parameter estimation due to their forward design, we show that the results obtained using estimated parameters are very similar to the results of real micrographs. Additionally, we evaluate the denoising capabilities of our approach and show that the results showed an improvement over state-of-the-art methods. Denoised micrographs exhibit less noise in the tilt-series tomography reconstructions, ultimately reducing the visual dominance of noise in direct volume rendering of microscopy tomograms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源