论文标题

Bradley-Terry模型识别约束的渐近比较

Asymptotic comparison of identifying constraints for Bradley-Terry models

论文作者

Wu, Weichen, Junker, Brian W., Niezink, Nynke M. D.

论文摘要

Bradley-Terry模型被广泛用于成对比较数据分析。在本文中,我们根据一般的线性可识别性约束,在其逻辑参数化中分析了Bradley-Terry模型的最大似然估计量的渐近行为。我们表明,所有比较对象的约束需要Bradley-terry得分,以零以最小化估计分数的差异之和,并建议在实践中使用此约束。

The Bradley-Terry model is widely used for pairwise comparison data analysis. In this paper, we analyze the asymptotic behavior of the maximum likelihood estimator of the Bradley-Terry model in its logistic parameterization, under a general class of linear identifiability constraints. We show that the constraint requiring the Bradley-Terry scores for all compared objects to sum to zero minimizes the sum of the variances of the estimated scores, and recommend using this constraint in practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源