论文标题

在汽车事件数据上使用尖峰神经网络检测对象检测

Object Detection with Spiking Neural Networks on Automotive Event Data

论文作者

Cordone, Loïc, Miramond, Benoît, Thierion, Philippe

论文摘要

汽车嵌入式算法在延迟,准确性和功耗方面具有很高的限制。在这项工作中,我们建议直接培训尖峰神经网络(SNN),以从事件摄像机传来的数据来设计快速有效的汽车嵌入式应用程序。的确,SNN是更现实的神经网络,神经元使用离散和异步尖峰(一种自然节能且硬件友好的操作模式)进行沟通。因此,事件数据是二进制且时空稀疏的,因此是峰值神经网络的理想输入。但是迄今为止,它们的性能不足以解决汽车现实世界中的问题,例如在不受控制的环境中检测复杂的对象。为了解决这个问题,我们利用了尖峰背流的最新进步 - 代孕梯度学习,参数LIF,Spikingjelly框架 - 以及我们的新\ textit {voxel cube}的事件编码,以培训4个不同的SNN基于流行的深度学习网络:Squeezenet,VGG,VGG,Mobileilenet和MobileLenet和Densenet和Densenet和Densenet。结果,我们设法增加了文献中通常考虑的SNN的大小和复杂性。在本文中,我们对两个汽车事件数据集进行了实验,为峰值神经网络建立了新的最新分类结果。基于这些结果,我们将SNN与SSD结合在一起,提出了能够在复杂的GEN1汽车检测事件数据集上执行对象检测的第一个尖峰神经网络。

Automotive embedded algorithms have very high constraints in terms of latency, accuracy and power consumption. In this work, we propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications. Indeed, SNNs are more biologically realistic neural networks where neurons communicate using discrete and asynchronous spikes, a naturally energy-efficient and hardware friendly operating mode. Event data, which are binary and sparse in space and time, are therefore the ideal input for spiking neural networks. But to date, their performance was insufficient for automotive real-world problems, such as detecting complex objects in an uncontrolled environment. To address this issue, we took advantage of the latest advancements in matter of spike backpropagation - surrogate gradient learning, parametric LIF, SpikingJelly framework - and of our new \textit{voxel cube} event encoding to train 4 different SNNs based on popular deep learning networks: SqueezeNet, VGG, MobileNet, and DenseNet. As a result, we managed to increase the size and the complexity of SNNs usually considered in the literature. In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks. Based on these results, we combined our SNNs with SSD to propose the first spiking neural networks capable of performing object detection on the complex GEN1 Automotive Detection event dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源