论文标题

深度监督皮肤病变诊断阶段和分支注意力

Deeply Supervised Skin Lesions Diagnosis with Stage and Branch Attention

论文作者

Dai, Wei, Liu, Rui, Wu, Tianyi, Wang, Min, Yin, Jianqin, Liu, Jun

论文摘要

皮肤病变的准确和公正检查对于早期诊断和治疗皮肤疾病至关重要。皮肤病变的视觉特征差异很大,因为图像是通过使用不同的成像设备从具有不同病变颜色和形态的患者中收集的。最近的研究报道说,结合卷积神经网络(CNN)是实用的,可以对图像进行分类以早期诊断皮肤疾病。但是,这些连接的CNN的实际使用受到限制,因为这些网络是重量级的,并且不足以处理上下文信息。尽管开发了轻量级网络(例如MobilenetV3和ExcelificedNet),以减少参数以在移动设备上实施深层神经网络,但功能表示深度不足会限制性能。为了解决现有的局限性,我们开发了一个新的精美和有效的神经网络,即Hierattn。 Hierattn采用了一种新颖的深度监督策略,通过使用只有一种训练损失的多阶段和多分支注意力机制来学习本地和全球特征。通过使用皮肤镜图像数据集ISIC2019和智能手机照片数据集PAD-FIFES-20(PAD2020)评估Hierattn的功效。实验结果表明,Hierattn在最先进的轻量级网络中达到了曲线(AUC)下最佳的精度和面积。该代码可在https://github.com/anthonyweidai/hierattn上找到。

Accurate and unbiased examinations of skin lesions are critical for the early diagnosis and treatment of skin diseases. Visual features of skin lesions vary significantly because the images are collected from patients with different lesion colours and morphologies by using dissimilar imaging equipment. Recent studies have reported that ensembled convolutional neural networks (CNNs) are practical to classify the images for early diagnosis of skin disorders. However, the practical use of these ensembled CNNs is limited as these networks are heavyweight and inadequate for processing contextual information. Although lightweight networks (e.g., MobileNetV3 and EfficientNet) were developed to achieve parameters reduction for implementing deep neural networks on mobile devices, insufficient depth of feature representation restricts the performance. To address the existing limitations, we develop a new lite and effective neural network, namely HierAttn. The HierAttn applies a novel deep supervision strategy to learn the local and global features by using multi-stage and multi-branch attention mechanisms with only one training loss. The efficacy of HierAttn was evaluated by using the dermoscopy images dataset ISIC2019 and smartphone photos dataset PAD-UFES-20 (PAD2020). The experimental results show that HierAttn achieves the best accuracy and area under the curve (AUC) among the state-of-the-art lightweight networks. The code is available at https://github.com/anthonyweidai/HierAttn.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源