论文标题

在有多个点的线性系统上,在有理正常曲线上

On linear systems with multiple points on a rational normal curve

论文作者

Laface, Antonio, Postinghel, Elisa, Sánchez, Luis José Santana

论文摘要

我们为在$ \ mathbb {p}^n $中的所有线性系统的尺寸提供了一个封闭的公式,并在分配的多重位置上以任意积分的分配为$ n $的正常曲线。特别是,我们对这些线性系统的专业提供了纯粹的几何解释,这是由于基础基因座中某些亚变量的存在:点的线性跨度,合理正常曲线的固定品种或它们之间的连接。

We give a closed formula for the dimension of all linear systems in $\mathbb{P}^n$ with assigned multiplicity at arbitrary collections of points lying on a rational normal curve of degree $n$. In particular we give a purely geometric explanation of the speciality of these linear systems, which is due to the presence of certain subvarieties in the base locus: linear spans of points, secant varieties of the rational normal curve or joins between them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源