论文标题

使用图形卷积网络和分布式触觉传感器,用各种对象属性进行多指手手操纵

Multi-Fingered In-Hand Manipulation with Various Object Properties Using Graph Convolutional Networks and Distributed Tactile Sensors

论文作者

Funabashi, Satoshi, Isobe, Tomoki, Hongyi, Fei, Hiramoto, Atsumu, Schmitz, Alexander, Sugano, Shigeki, Ogata, Tetsuya

论文摘要

多指手的手可以用来实现许多灵巧的操纵任务,与人类类似,触觉感知可以增强各种物体的操纵稳定性。但是,多指手的触觉传感器具有多种尺寸和形状。卷积神经网络(CNN)对于处理触觉信息可能很有用,但是多指手中的信息需要任意预处理,因为CNN需要矩形形状的输入,这可能会导致不稳定的结果。因此,如何处理这种复杂形状的触觉信息并利用它来实现操纵技能仍然是一个悬而未决的问题。本文提出了一种基于图形卷积网络(GCN)的控制方法,该方法从具有复杂的传感器比对的触觉数据中提取地球特征。此外,将对象属性标签提供给GCN以调整手持操作动作。分布式的三轴触觉传感器安装在指尖,手指指尖和掌上的手掌上,导致1152触觉测量。收集培训数据,并通过数据手套收集,以将人类灵巧的操作直接转移到机器人手中。 GCN在手持操作方面取得了很高的成功率。我们还确认,当向GCN提供正确的对象标签时,脆弱的对象变形较小。当使用PCA可视化GCN的激活时,我们验证了网络获得的地球特征。即使实验者将握住的物体和未经训练的物体拉动,我们的方法也达到了稳定的操作。

Multi-fingered hands could be used to achieve many dexterous manipulation tasks, similarly to humans, and tactile sensing could enhance the manipulation stability for a variety of objects. However, tactile sensors on multi-fingered hands have a variety of sizes and shapes. Convolutional neural networks (CNN) can be useful for processing tactile information, but the information from multi-fingered hands needs an arbitrary pre-processing, as CNNs require a rectangularly shaped input, which may lead to unstable results. Therefore, how to process such complex shaped tactile information and utilize it for achieving manipulation skills is still an open issue. This paper presents a control method based on a graph convolutional network (GCN) which extracts geodesical features from the tactile data with complicated sensor alignments. Moreover, object property labels are provided to the GCN to adjust in-hand manipulation motions. Distributed tri-axial tactile sensors are mounted on the fingertips, finger phalanges and palm of an Allegro hand, resulting in 1152 tactile measurements. Training data is collected with a data-glove to transfer human dexterous manipulation directly to the robot hand. The GCN achieved high success rates for in-hand manipulation. We also confirmed that fragile objects were deformed less when correct object labels were provided to the GCN. When visualizing the activation of the GCN with a PCA, we verified that the network acquired geodesical features. Our method achieved stable manipulation even when an experimenter pulled a grasped object and for untrained objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源