论文标题

增量:通过自我监督学习的增量少数射门对象检测

Incremental-DETR: Incremental Few-Shot Object Detection via Self-Supervised Learning

论文作者

Dong, Na, Zhang, Yongqiang, Ding, Mingli, Lee, Gim Hee

论文摘要

增量少量对象检测旨在检测新的类别,而无需忘记基本类别的知识,而只有几个新颖类中的标记培训数据。大多数相关的先前工作都是关于逐步检测的,这些对象检测依赖于每个新颖类的丰富训练样本的可用性,这些培训样本实质上将可扩展性限制在可稀缺的新数据的现实环境中。在本文中,我们提出了通过对DETR对象检测器上的微调和自我监督的学习进行增量射击对象检测的增量。为了减轻少量新型类数据的严重过度拟合,我们首先通过使用选择性搜索作为伪标签生成的其他对象提案,对DETR的特定组成部分进行微调。我们进一步介绍了一种增量的几次微调策略,并在DETR的特定组成部分上进行了知识蒸馏,以鼓励网络检测新型类,而不会忘记基础类别。对标准增量对象检测进行的广泛实验和增量少量对象检测设置表明,我们的方法大大优于最先进的方法。

Incremental few-shot object detection aims at detecting novel classes without forgetting knowledge of the base classes with only a few labeled training data from the novel classes. Most related prior works are on incremental object detection that rely on the availability of abundant training samples per novel class that substantially limits the scalability to real-world setting where novel data can be scarce. In this paper, we propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector. To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision from additional object proposals generated using Selective Search as pseudo labels. We further introduce an incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without forgetting the base classes. Extensive experiments conducted on standard incremental object detection and incremental few-shot object detection settings show that our approach significantly outperforms state-of-the-art methods by a large margin.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源