论文标题
曲折近似和$ {\ cal z} $ - 稳定性
Tracial approximation and ${\cal Z}$-stability
论文作者
论文摘要
令$ a $为一个Unital可分开的非元素amenable简单稳定的有限的C* - 代数,以使其奇特状态空间具有$σ$ -Compactable可计数的极值极值边界。我们表明,$ a $是$ {\ cal z} $ - 仅当它具有严格的比较和稳定的等级时才稳定。我们表明,该结果也适用于非空成案例(这可能不等同于Unital案件)。
Let $A$ be a unital separable non-elementary amenable simple stably finite C*-algebra such that its tracial state space has a $σ$-compact countable-dimensional extremal boundary. We show that $A$ is ${\cal Z}$-stable if and only if it has strict comparison and stable rank one. We show that this result also holds for non-unital cases (which may not be Morita equivalent to unital ones).