论文标题

建立新兴应用程序的高性能和安全的内存系统和体系结构

Towards a High-performance and Secure Memory System and Architecture for Emerging Applications

论文作者

Wang, Zhendong, Hu, Yang

论文摘要

在本文中,我们提出了一种记忆和计算协调的方法,以彻底利用基于GPU的异质系统的特征和功能,以有效地优化应用程序的性能和隐私。具体来说,1)我们提出了一种任务意识和动态内存管理机制,以优化应用程序的延迟和内存足迹,尤其是在多任务方案中。 2)我们提出了一个新型的延迟感知内存管理框架,该框架分析了应用程序特征和硬件功能,以减少应用程序的初始化延迟和响应时间。 3)我们开发了一种新的模型提取攻击,该攻击探讨了GPU统一内存系统的脆弱性,以准确窃取私有DNN模型。 4)我们提出了一个CPU/GPU共同加入机制,该机制可以在集成的CPU/GPU平台中防御定时相关攻击,以为边缘应用程序提供安全的执行环境。 该论文旨在在GPU异质平台中开发高性能和安全的内存系统和体系结构,以有效,安全地部署Emerering AI-ai-ai-ables的应用程序。

In this dissertation, we propose a memory and computing coordinated methodology to thoroughly exploit the characteristics and capabilities of the GPU-based heterogeneous system to effectively optimize applications' performance and privacy. Specifically, 1) we propose a task-aware and dynamic memory management mechanism to co-optimize applications' latency and memory footprint, especially in multitasking scenarios. 2) We propose a novel latency-aware memory management framework that analyzes the application characteristics and hardware features to reduce applications' initialization latency and response time. 3) We develop a new model extraction attack that explores the vulnerability of the GPU unified memory system to accurately steal private DNN models. 4) We propose a CPU/GPU Co-Encryption mechanism that can defend against a timing-correlation attack in an integrated CPU/GPU platform to provide a secure execution environment for the edge applications. This dissertation aims at developing a high-performance and secure memory system and architecture in GPU heterogeneous platforms to deploy emerging AI-enabled applications efficiently and safely.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源